Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 987
Filter
1.
J Phys Chem B ; 128(16): 3795-3806, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38606592

ABSTRACT

The Hippo signaling pathway is a highly conserved signaling network that plays a central role in regulating cellular growth, proliferation, and organ size. This pathway consists of a kinase cascade that integrates various upstream signals to control the activation or inactivation of YAP/TAZ proteins. Phosphorylated YAP/TAZ is sequestered in the cytoplasm; however, when the Hippo pathway is deactivated, it translocates into the nucleus, where it associates with TEAD transcription factors. This partnership is instrumental in regulating the transcription of progrowth and antiapoptotic genes. Thus, in many cancers, aberrantly hyperactivated YAP/TAZ promotes oncogenesis by contributing to cancer cell proliferation, metastasis, and therapy resistance. Because YAP and TAZ exert their oncogenic effects by binding with TEAD, it is critical to understand this key interaction to develop cancer therapeutics. Previous research has indicated that TEAD undergoes autopalmitoylation at a conserved cysteine, and small molecules that inhibit TEAD palmitoylation disrupt effective YAP/TAZ binding. However, how exactly palmitoylation contributes to YAP/TAZ-TEAD interactions and how the TEAD palmitoylation inhibitors disrupt this interaction remains unknown. Utilizing molecular dynamics simulations, our investigation not only provides detailed atomistic insight into the YAP/TAZ-TEAD dynamics but also unveils that the inhibitor studied influences the binding of YAP and TAZ to TEAD in distinct manners. This discovery has significant implications for the design and deployment of future molecular interventions targeting this interaction.


Subject(s)
Lipoylation , Molecular Dynamics Simulation , Transcription Factors , Transcription Factors/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/chemistry , Humans , Allosteric Regulation/drug effects , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/chemistry , YAP-Signaling Proteins/metabolism , Protein Binding , TEA Domain Transcription Factors/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/chemistry , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Trans-Activators/metabolism , Trans-Activators/chemistry , Trans-Activators/antagonists & inhibitors , Acyltransferases/metabolism , Acyltransferases/antagonists & inhibitors , Acyltransferases/chemistry
2.
PLoS Pathog ; 19(5): e1011323, 2023 05.
Article in English | MEDLINE | ID: mdl-37134108

ABSTRACT

The severity of disease following infection with SARS-CoV-2 is determined by viral replication kinetics and host immunity, with early T cell responses and/or suppression of viraemia driving a favourable outcome. Recent studies uncovered a role for cholesterol metabolism in the SARS-CoV-2 life cycle and in T cell function. Here we show that blockade of the enzyme Acyl-CoA:cholesterol acyltransferase (ACAT) with Avasimibe inhibits SARS-CoV-2 pseudoparticle infection and disrupts the association of ACE2 and GM1 lipid rafts on the cell membrane, perturbing viral attachment. Imaging SARS-CoV-2 RNAs at the single cell level using a viral replicon model identifies the capacity of Avasimibe to limit the establishment of replication complexes required for RNA replication. Genetic studies to transiently silence or overexpress ACAT isoforms confirmed a role for ACAT in SARS-CoV-2 infection. Furthermore, Avasimibe boosts the expansion of functional SARS-CoV-2-specific T cells from the blood of patients sampled during the acute phase of infection. Thus, re-purposing of ACAT inhibitors provides a compelling therapeutic strategy for the treatment of COVID-19 to achieve both antiviral and immunomodulatory effects. Trial registration: NCT04318314.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Acyltransferases/antagonists & inhibitors , Antiviral Agents/pharmacology , SARS-CoV-2 , T-Lymphocytes
3.
Metabolism ; 143: 155550, 2023 06.
Article in English | MEDLINE | ID: mdl-36958671

ABSTRACT

BACKGROUND: Obesity is a complex disease associated with multiple concurrent complications, and the coordinated targeting of multiple pathways in pharmacological treatment may improve weight loss outcomes. During synthesis, ghrelin is converted from the 'inactive' unacylated ghrelin (UAG) to the active acylated ghrelin (AG) by the enzyme ghrelin-O-acyltransferase (GOAT), stimulating appetite and food intake. AIMS: To report the results of two Phase I studies investigating single rising doses (SRDs) or multiple rising doses (MRDs) of the novel oral GOAT inhibitor BI 1356225 versus placebo in male and postmenopausal/sterilised female subjects with overweight or obesity. METHODS: The SRD study investigated single doses of BI 1356225 (0.1-20.0 mg) in healthy male subjects with a BMI of 18.5-29.9 kg/m2 (SRD cohort) and assessed doses of 2.5 mg BI 1356225 under fed and fasted conditions (bioavailability [BA] cohort). The MRD study investigated multiple doses of BI 1356225 (0.2, 1.0, 2.5 or 10.0 mg) or 5.0 mg BI 1356225 with a single dose of midazolam and celecoxib (drug-drug interaction part) over 28 days in adults with a BMI of 27.0-39.9 kg/m2. RESULTS: Sixty-five subjects were treated in the SRD study. Drug-related adverse events (AEs) were reported for five subjects (9.1 %) in the SRD cohort and two subjects (20.0 %) in the BA cohort, with the most frequent being headache (SRD: n = 4, 9.8 %; BA: n = 1, 10.0 %). In the MRD study, two (2.3 %) of the 87 subjects treated discontinued treatment because of AEs. Drug-related AEs were reported for 18 subjects (20.7 %), did not increase with dose and were most frequently reported as headache (n = 5, 5.7 %) and gastrointestinal disorders (n = 5, 5.7 %). In both studies, exposure parameters (area under the concentration-time curve [AUC] and maximum plasma concentration [Cmax]) of BI 1356225 increased across dose groups, although this was less than dose-proportional across the entire dose range. In the BA cohort of the SRD study, AUC0-∞ was slightly increased and Cmax slightly decreased in fed versus fasted conditions, with fed/fasted ratios (90 % CI) of 101.10 % (92.42, 110.60) and 91.67 % (78.50, 107.05), respectively. In both studies, AG concentrations and the AG/UAG ratio were dose-dependently decreased after BI 1356225 treatment from baseline versus placebo. In the MRD study, UAG concentrations were increased from baseline, but not dose-dependently. No differences were observed in bodyweight, appetite, food cravings, ad libitum food uptake or obesity-related biomarkers after 28 days of treatment with BI 1356225. CONCLUSIONS: Treatment with SRDs and MRDs of BI 1356225 was well tolerated by healthy males and subjects with overweight/obesity. BI 1356225 treatment over 28 days reduced AG concentrations and the AG/UAG ratio by >80 %, but no effect was seen on bodyweight, hunger/satiety, control of eating or energy intake. Although, at 4 weeks, the MRD study was fairly short, a reduction in bodyweight would be expected to be evident by this time, suggesting that a reduction of AG via a GOAT inhibitor is not sufficient to induce clinically relevant bodyweight loss.


Subject(s)
Acyltransferases , Obesity , Overweight , Female , Male , Acyltransferases/antagonists & inhibitors , Area Under Curve , Body Weight , Double-Blind Method , Ghrelin , Headache/chemically induced , Obesity/drug therapy , Overweight/drug therapy , Humans
4.
Int J Mol Sci ; 24(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36902186

ABSTRACT

There is an increasing urgency in the search for new drugs to target high-grade cancers such as osteosarcomas (OS), as these have limited therapeutic options and poor prognostic outlook. Even though key molecular events leading to tumorigenesis are not well understood, it is widely agreed that OS tumours are Wnt-driven. ETC-159, a PORCN inhibitor that inhibits the extracellular secretion of Wnt, has recently progressed on to clinical trials. In vitro and in vivo murine and chick chorioallantoic membrane xenograft models were established to examine the effect of ETC-159 on OS. Consistent with our hypothesis, we noted that ETC-159 treatment not only resulted in markedly decreased ß-catenin staining in xenografts, but also increased tumour necrosis and a significant reduction in vascularity-a hereby yet undescribed phenotype following ETC-159 treatment. Through further understanding the mechanism of this new window of vulnerability, therapies can be developed to potentiate and maximize the effectiveness of ETC-159, further increasing its clinical utility for the treatment of OS.


Subject(s)
Acyltransferases , Bone Neoplasms , Neovascularization, Pathologic , Osteosarcoma , Wnt Signaling Pathway , Animals , Humans , Mice , Acyltransferases/antagonists & inhibitors , beta Catenin/metabolism , Bone Neoplasms/blood supply , Bone Neoplasms/drug therapy , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation , Membrane Proteins/antagonists & inhibitors , Necrosis , Osteosarcoma/blood supply , Osteosarcoma/drug therapy , Wnt Signaling Pathway/drug effects , Neovascularization, Pathologic/drug therapy
5.
Molecules ; 27(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36080246

ABSTRACT

N-myristoyltransferase (NMT) inhibitors that were initially developed for treatment of parasitic protozoan infections, including sleeping sickness, malaria, and leismaniasis, have also shown great promise as treatment for oncological diseases. The successful transition of NMT inhibitors, which are currently at preclinical to early clinical stages, toward clinical approval and utilization may depend on the development and design of a diverse set of drug molecules with particular selectivity or pharmacological properties. In our study, we report that a common feature in the inhibitory mechanism of NMT is the formation of a salt bridge between a positively charged chemical group of the small molecule and the negatively charged C-terminus of an enzyme. Based on this observation, we designed a virtual screening protocol to identify novel ligands that mimic this mode of interaction. By screening over 1.1 million structures downloaded from the ZINC database, several hits were identified that displayed NMT inhibitory activity. The stability of the inhibitor-NMT complexes was evaluated by molecular dynamics simulations. The ligands from the stable complexes were tested in vitro and some of them appear to be promising leads for further optimization.


Subject(s)
Acyltransferases , Enzyme Inhibitors , Acyltransferases/antagonists & inhibitors , Acyltransferases/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Ligands , Molecular Docking Simulation
6.
J Biol Chem ; 298(10): 102469, 2022 10.
Article in English | MEDLINE | ID: mdl-36087837

ABSTRACT

Protein S-acylation is a reversible post-translational modification that modulates the localization and function of many cellular proteins. S-acylation is mediated by a family of zinc finger DHHC (Asp-His-His-Cys) domain-containing (zDHHC) proteins encoded by 23 distinct ZDHHC genes in the human genome. These enzymes catalyze S-acylation in a two-step process involving "autoacylation" of the cysteine residue in the catalytic DHHC motif followed by transfer of the acyl chain to a substrate cysteine. S-acylation is essential for many fundamental physiological processes, and there is growing interest in zDHHC enzymes as novel drug targets for a range of disorders. However, there is currently a lack of chemical modulators of S-acylation either for use as tool compounds or for potential development for therapeutic purposes. Here, we developed and implemented a novel FRET-based high-throughput assay for the discovery of compounds that interfere with autoacylation of zDHHC2, an enzyme that is implicated in neuronal S-acylation pathways. Our screen of >350,000 compounds identified two related tetrazole-containing compounds (TTZ-1 and TTZ-2) that inhibited both zDHHC2 autoacylation and substrate S-acylation in cell-free systems. These compounds were also active in human embryonic kidney 293T cells, where they inhibited the S-acylation of two substrates (SNAP25 and PSD95 [postsynaptic density protein 95]) mediated by different zDHHC enzymes, with some apparent isoform selectivity. Furthermore, we confirmed activity of the hit compounds through resynthesis, which provided sufficient quantities of material for further investigations. The assays developed provide novel strategies to screen for zDHHC inhibitors, and the identified compounds add to the chemical toolbox for interrogating cellular activities of zDHHC enzymes in S-acylation.


Subject(s)
Acyltransferases , Cysteine , Drug Discovery , Humans , Acylation/drug effects , Acyltransferases/antagonists & inhibitors , Acyltransferases/metabolism , Cysteine/metabolism , Lipoylation , Zinc Fingers
7.
Nature ; 607(7920): 816-822, 2022 07.
Article in English | MEDLINE | ID: mdl-35831507

ABSTRACT

Wnt signalling is essential for regulation of embryonic development and adult tissue homeostasis1-3, and aberrant Wnt signalling is frequently associated with cancers4. Wnt signalling requires palmitoleoylation on a hairpin 2 motif by the endoplasmic reticulum-resident membrane-bound O-acyltransferase Porcupine5-7 (PORCN). This modification is indispensable for Wnt binding to its receptor Frizzled, which triggers signalling8,9. Here we report four cryo-electron microscopy structures of human PORCN: the complex with the palmitoleoyl-coenzyme A (palmitoleoyl-CoA) substrate; the complex with the PORCN inhibitor LGK974, an anti-cancer drug currently in clinical trials10; the complex with LGK974 and WNT3A hairpin 2 (WNT3Ap); and the complex with a synthetic palmitoleoylated WNT3Ap analogue. The structures reveal that hairpin 2 of WNT3A, which is well conserved in all Wnt ligands, inserts into PORCN from the lumenal side, and the palmitoleoyl-CoA accesses the enzyme from the cytosolic side. The catalytic histidine triggers the transfer of the unsaturated palmitoleoyl group to the target serine on the Wnt hairpin 2, facilitated by the proximity of the two substrates. The inhibitor-bound structure shows that LGK974 occupies the palmitoleoyl-CoA binding site to prevent the reaction. Thus, this work provides a mechanism for Wnt acylation and advances the development of PORCN inhibitors for cancer treatment.


Subject(s)
Acyltransferases , Membrane Proteins , Wnt Signaling Pathway , Acylation/drug effects , Acyltransferases/antagonists & inhibitors , Acyltransferases/metabolism , Antineoplastic Agents , Binding Sites , Coenzyme A/metabolism , Cryoelectron Microscopy , Histidine , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Palmitoyl Coenzyme A , Pyrazines/pharmacology , Pyridines/pharmacology , Serine , Substrate Specificity , Wnt Signaling Pathway/drug effects , Wnt3A Protein
8.
J Am Chem Soc ; 144(14): 6237-6250, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35362954

ABSTRACT

Chronically elevated circulating fatty acid levels promote lipid accumulation in nonadipose tissues and cause lipotoxicity. Adipose triglyceride lipase (ATGL) critically determines the release of fatty acids from white adipose tissue, and accumulating evidence suggests that inactivation of ATGL has beneficial effects on lipotoxicity-driven disorders including insulin resistance, steatohepatitis, and heart disease, classifying ATGL as a promising drug target. Here, we report on the development and biological characterization of the first small-molecule inhibitor of human ATGL. This inhibitor, designated NG-497, selectively inactivates human and nonhuman primate ATGL but not structurally and functionally related lipid hydrolases. We demonstrate that NG-497 abolishes lipolysis in human adipocytes in a dose-dependent and reversible manner. The combined analysis of mouse- and human-selective inhibitors, chimeric ATGL proteins, and homology models revealed detailed insights into enzyme-inhibitor interactions. NG-497 binds ATGL within a hydrophobic cavity near the active site. Therein, three amino acid residues determine inhibitor efficacy and species selectivity and thus provide the molecular scaffold for selective inhibition.


Subject(s)
Acyltransferases/antagonists & inhibitors , Adipocytes , Fatty Acids/metabolism , Lipolysis , Acyltransferases/metabolism , Adipocytes/metabolism , Animals , Humans , Lipolysis/physiology , Mice
9.
Cell Biochem Funct ; 40(4): 359-368, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35445405

ABSTRACT

Porcupine (Porcn) enzyme plays an essential role in Wnt signaling activation. Stearoyl-CoA desaturase-1 (SCD1) is required to provide Porcn substrates. The aim of this study was to determine the effect of a novel Porcn inhibitor on the fate of human embryonic stem cells (hESCs) and the reliance of Porcn on SCD1 activity. hESCs were cultured on a feeder layer or Matrigel-coated plates. Small molecules WNT974 (LGK-974) and CAY10566 were used to inhibit Porcn and SCD1 activity, respectively. We assessed the effect of Porcn inhibition on viability, expression of Wnt signaling targets, pluripotency markers, proliferation, differentiation, and protein fatty acylation. hESCs' conditioned medium (CM) containing secreted Wnt proteins were applied in rescue experiments. To examine the catalytic dependency of Porcn on SCD1, the results of combined inhibitor treatment were compared with the SCD1 inhibitor alone. LGK-974 at the selected concentrations showed mild effects on hESCs viability, but significantly reduced messenger RNA and protein expression of Wnt signaling targets (Axin-2 and c-Myc) and pluripotency markers (OCT-4 and SOX-2) (p < .05). Adding 1 µM of Porcn inhibitor reduced proliferation (p = .03) and enhanced differentiation capacity into ectodermal progenitors (p = .02), which were reverted by CM. Click chemistry reaction did not show significant alteration in protein fatty acylation upon LGK-974 treatment. Moreover, combined inhibitor treatment caused no further substantial reduction in Wnt signaling targets, pluripotency markers, and protein fatty acylation relative to CAY10566-treated cultures. The substrate availability for Porcn activity is regulated by SCD1 and targeting Porcn by LGK-974 prompts the transition of hESCs from self-renewal state to ectodermal lineage.


Subject(s)
Human Embryonic Stem Cells , Wnt Signaling Pathway , Acyltransferases/antagonists & inhibitors , Acyltransferases/metabolism , Human Embryonic Stem Cells/drug effects , Human Embryonic Stem Cells/metabolism , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Pyrazines/pharmacology , Pyridines/pharmacology , Stearoyl-CoA Desaturase
10.
Mol Cancer Ther ; 21(6): 936-947, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35313331

ABSTRACT

WNT signaling promotes pancreatic ductal adenocarcinoma (PDAC) through diverse effects on proliferation, differentiation, survival, and stemness. A subset of PDAC with inactivating mutations in ring finger protein 43 (RNF43) show growth dependency on autocrine WNT ligand signaling and are susceptible to agents that block WNT ligand acylation by Porcupine O-acyltransferase, which is required for proper WNT ligand processing and secretion. For this study, global transcriptomic, proteomic, and metabolomic analyses were performed to explore the therapeutic response of RNF43-mutant PDAC to the Porcupine inhibitor (PORCNi) LGK974. LGK974 disrupted cellular bioenergetics and mitochondrial function through actions that included rapid mitochondrial depolarization, reduced mitochondrial content, and inhibition of oxidative phosphorylation and tricarboxylic acid cycle. LGK974 also broadly altered transcriptional activity, downregulating genes involved in cell cycle, nucleotide metabolism, and ribosomal biogenesis and upregulating genes involved in epithelial-mesenchymal transition, hypoxia, endocytosis, and lysosomes. Autophagy and lysosomal activity were augmented in response to LGK974, which synergistically inhibited tumor cell viability in combination with chloroquine. Autocrine WNT ligand signaling dictates metabolic dependencies in RNF43-mutant PDAC through a combination of transcription dependent and independent effects linked to mitochondrial health and function. Metabolic adaptations to mitochondrial damage and bioenergetic stress represent potential targetable liabilities in combination with PORCNi for the treatment of WNT ligand-addicted PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Wnt Signaling Pathway , Acyltransferases/antagonists & inhibitors , Acyltransferases/genetics , Acyltransferases/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Cell Proliferation , Homeostasis , Humans , Ligands , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitochondria/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Proteomics , Pancreatic Neoplasms
11.
Chem Biodivers ; 19(2): e202100748, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34936193

ABSTRACT

The pharmacological inhibition of human N-myristoyltransferase (HsNMT) has emerged as an efficient strategy to completely prevent the replication process of rhinoviruses, a potential treatment for the common cold. This was corroborated by the recent discovery of compound IMP-1088, a novel inhibitor that demonstrated a dual-inhibitory activity against the two HsNMT subtypes 1 and 2 without inducing cytotoxicity. However, the molecular and structural basis for the dual-inhibitory potential of IMP-1088 has not been investigated. As such, we employ molecular modelling techniques to resolve the structural mechanisms that account for the dual-inhibitory prowess of IMP-1088. Sequence and nanosecond-based analyses identified Tyr296, Phe190, Tyr420, Leu453, Gln496, Val181, Leu474, Glu182, and Asn246 as residues common within the binding pockets of both HsNMT1 and HsNMT2 subtypes whose consistent interactions with IMP-1088 underpin the basis for its dual inhibitory potency. Nano-second-based assessment of interaction dynamics revealed that Tyr296 consistently elicited high-affinity π-π stacked interaction with IMP-1088, thus further highlighting its cruciality corroborating previous report. An exploration of resulting structural changes upon IMP-1088 binding further revealed a characteristic impeding of residue fluctuations, structural compactness, and a consequential burial of crucial hydrophobic residues, features required for HsNMT1/2 functionality. Findings present essential structural perspectives that augment previous experimental efforts and could also advance drug development for treating respiratory tract infections, especially those mediated by rhinoviruses.


Subject(s)
Acyltransferases , Common Cold , Humans , Acyltransferases/antagonists & inhibitors , Common Cold/drug therapy , Models, Molecular
12.
J Med Virol ; 94(1): 342-348, 2022 01.
Article in English | MEDLINE | ID: mdl-34528721

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 2019 (COVID-19) pandemic. The S protein is the key viral protein for associating with ACE2, the receptor for SARS-CoV-2. There are many kinds of posttranslational modifications in S protein. However, the detailed mechanism of palmitoylation of SARS-CoV-2 S remains to be elucidated. In our current study, we characterized the palmitoylation of SARS-CoV-2 S. Both the C15 and cytoplasmic tail of SARS-CoV-2 S were palmitoylated. Fatty acid synthase inhibitor C75 and zinc finger DHHC domain-containing palmitoyltransferase (ZDHHC) inhibitor 2-BP reduced the palmitoylation of S. Interestingly, palmitoylation of SARS-CoV-2 S was not required for plasma membrane targeting of S but was critical for S-mediated syncytia formation and SARS-CoV-2 pseudovirus particle entry. Overexpression of ZDHHC2, ZDHHC3, ZDHHC4, ZDHHC5, ZDHHC8, ZDHHC9, ZDHHC11, ZDHHC14, ZDHHC16, ZDHHC19, and ZDHHC20 promoted the palmitoylation of S. Furthermore, those ZDHHCs were identified to associate with SARS-CoV-2 S. Our study not only reveals the mechanism of S palmitoylation but also will shed important light into the role of S palmitoylation in syncytia formation and virus entry.


Subject(s)
Cell Membrane/metabolism , Giant Cells/metabolism , Lipoylation/physiology , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/pharmacology , Acyltransferases/antagonists & inhibitors , COVID-19/pathology , Cell Line , HEK293 Cells , Humans , Protein Processing, Post-Translational/physiology
13.
Int J Cancer ; 150(5): 727-740, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34536299

ABSTRACT

Wnt signaling plays an essential role in the initiation and progression of various types of cancer. Besides, the Wnt pathway components have been established as reliable biomarkers and potential targets for cancer therapy. Wnt signaling is categorized into canonical and noncanonical pathways. The canonical pathway is involved in cell survival, proliferation, differentiation and migration, while the noncanonical pathway regulates cell polarity and migration. Apart from its biological role in development and homeostasis, the Wnt pathway has been implicated in several pathological disorders, including cancer. As a result, inhibiting this pathway has been a focus of cancer research with multiple targetable candidates in development. In this review, our focus will be to summarize information about ongoing and completed clinical trials targeting various Wnt pathway components, along with describing current and emerging Wnt targeted therapies. In addition, we will discuss potential opportunities and associated challenges of inhibiting Wnt signaling for cancer therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Clinical Trials as Topic , Neoplasms/drug therapy , Wnt Signaling Pathway/drug effects , Acyltransferases/antagonists & inhibitors , Animals , Humans , Membrane Proteins/antagonists & inhibitors , Tankyrases/antagonists & inhibitors , Wnt Signaling Pathway/physiology , beta Catenin/antagonists & inhibitors
14.
Int J Mol Sci ; 22(23)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34884760

ABSTRACT

A series of new oxadiazole sulfone derivatives containing an amide moiety was synthesized based on fragment virtual screening to screen high-efficiency antibacterial agents for rice bacterial diseases. All target compounds showed greater bactericidal activity than commercial bactericides. 3-(4-fluorophenyl)-N-((5-(methylsulfonyl)-1,3,4-oxadiazol-2-yl)methyl)acrylamide (10) showed excellent antibacterial activity against Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola, with EC50 values of 0.36 and 0.53 mg/L, respectively, which were superior to thiodiazole copper (113.38 and 131.54 mg/L) and bismerthiazol (83.07 and 105.90 mg/L). The protective activity of compound 10 against rice bacterial leaf blight and rice bacterial leaf streak was 43.2% and 53.6%, respectively, which was superior to that of JHXJZ (34.1% and 26.4%) and thiodiazole copper (33.0% and 30.2%). The curative activity of compound 10 against rice bacterial leaf blight and rice bacterial leaf streak was 44.5% and 51.7%, respectively, which was superior to that of JHXJZ (32.6% and 24.4%) and thiodiazole copper (27.1% and 28.6%). Moreover, compound 10 might inhibit the growth of Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola by affecting the extracellular polysaccharides, destroying cell membranes, and inhibiting the enzyme activity of dihydrolipoamide S-succinyltransferase.


Subject(s)
Acyltransferases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/pharmacology , Xanthomonas/drug effects , Acyltransferases/chemistry , Anti-Bacterial Agents/chemistry , Drug Design , Drug Discovery , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Ligands , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Oryza/microbiology , Plant Diseases/microbiology , User-Computer Interface , Xanthomonas/enzymology , Xanthomonas/pathogenicity
15.
Molecules ; 26(24)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34946685

ABSTRACT

Ghrelin is a 28-residue peptide hormone produced by stomach P/D1 cells located in oxyntic glands of the fundus mucosa. Post-translational octanoylation of its Ser-3 residue, catalyzed by MBOAT4 (aka ghrelin O-acyl transferase (GOAT)), is essential for the binding of the hormone to its receptor in target tissues. Physiological roles of acyl ghrelin include the regulation of food intake, growth hormone secretion from the pituitary, and inhibition of insulin secretion from the pancreas. Here, we describe a medicinal chemistry campaign that led to the identification of small lipopeptidomimetics that inhibit GOAT in vitro. These molecules compete directly for substrate binding. We further describe the synthesis of heterocyclic inhibitors that compete at the acyl coenzyme A binding site.


Subject(s)
Acyltransferases/antagonists & inhibitors , Acyltransferases/chemistry , Enzyme Inhibitors/chemistry , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/chemistry , Peptidomimetics/chemistry , Acyltransferases/metabolism , Animals , Enzyme Inhibitors/chemical synthesis , Gastric Mucosa/enzymology , Ghrelin/metabolism , Lipoylation , Membrane Proteins/metabolism , Mice , Peptidomimetics/chemical synthesis
16.
Mol Cell ; 81(24): 5025-5038.e10, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34890564

ABSTRACT

The Sonic Hedgehog (SHH) morphogen pathway is fundamental for embryonic development and stem cell maintenance and is implicated in various cancers. A key step in signaling is transfer of a palmitate group to the SHH N terminus, catalyzed by the multi-pass transmembrane enzyme Hedgehog acyltransferase (HHAT). We present the high-resolution cryo-EM structure of HHAT bound to substrate analog palmityl-coenzyme A and a SHH-mimetic megabody, revealing a heme group bound to HHAT that is essential for HHAT function. A structure of HHAT bound to potent small-molecule inhibitor IMP-1575 revealed conformational changes in the active site that occlude substrate binding. Our multidisciplinary analysis provides a detailed view of the mechanism by which HHAT adapts the membrane environment to transfer an acyl chain across the endoplasmic reticulum membrane. This structure of a membrane-bound O-acyltransferase (MBOAT) superfamily member provides a blueprint for other protein-substrate MBOATs and a template for future drug discovery.


Subject(s)
Acyltransferases/antagonists & inhibitors , Acyltransferases/metabolism , Enzyme Inhibitors/pharmacology , Hedgehog Proteins/metabolism , Membrane Proteins/metabolism , Acylation , Acyltransferases/genetics , Acyltransferases/ultrastructure , Allosteric Regulation , Animals , COS Cells , Catalytic Domain , Chlorocebus aethiops , Cryoelectron Microscopy , HEK293 Cells , Heme/metabolism , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Membrane Proteins/ultrastructure , Molecular Dynamics Simulation , Palmitoyl Coenzyme A/metabolism , Protein Conformation , Signal Transduction , Structure-Activity Relationship
17.
PLoS Biol ; 19(10): e3001408, 2021 10.
Article in English | MEDLINE | ID: mdl-34695132

ABSTRACT

We have combined chemical biology and genetic modification approaches to investigate the importance of protein myristoylation in the human malaria parasite, Plasmodium falciparum. Parasite treatment during schizogony in the last 10 to 15 hours of the erythrocytic cycle with IMP-1002, an inhibitor of N-myristoyl transferase (NMT), led to a significant blockade in parasite egress from the infected erythrocyte. Two rhoptry proteins were mislocalized in the cell, suggesting that rhoptry function is disrupted. We identified 16 NMT substrates for which myristoylation was significantly reduced by NMT inhibitor (NMTi) treatment, and, of these, 6 proteins were substantially reduced in abundance. In a viability screen, we showed that for 4 of these proteins replacement of the N-terminal glycine with alanine to prevent myristoylation had a substantial effect on parasite fitness. In detailed studies of one NMT substrate, glideosome-associated protein 45 (GAP45), loss of myristoylation had no impact on protein location or glideosome assembly, in contrast to the disruption caused by GAP45 gene deletion, but GAP45 myristoylation was essential for erythrocyte invasion. Therefore, there are at least 3 mechanisms by which inhibition of NMT can disrupt parasite development and growth: early in parasite development, leading to the inhibition of schizogony and formation of "pseudoschizonts," which has been described previously; at the end of schizogony, with disruption of rhoptry formation, merozoite development and egress from the infected erythrocyte; and at invasion, when impairment of motor complex function prevents invasion of new erythrocytes. These results underline the importance of P. falciparum NMT as a drug target because of the pleiotropic effect of its inhibition.


Subject(s)
Erythrocytes/parasitology , Myristic Acid/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Acyltransferases/antagonists & inhibitors , Acyltransferases/metabolism , Animals , CRISPR-Cas Systems/genetics , Cell Survival/drug effects , Enzyme Inhibitors/pharmacology , Erythrocytes/drug effects , Lipoylation/drug effects , Merozoites/drug effects , Merozoites/metabolism , Parasites/drug effects , Parasites/growth & development , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Plasmodium falciparum/ultrastructure , Solubility , Substrate Specificity/drug effects
18.
J Med Chem ; 64(19): 14377-14425, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34569791

ABSTRACT

This study describes a novel series of UDP-N-acetylglucosamine acyltransferase (LpxA) inhibitors that was identified through affinity-mediated selection from a DNA-encoded compound library. The original hit was a selective inhibitor of Pseudomonas aeruginosa LpxA with no activity against Escherichia coli LpxA. The biochemical potency of the series was optimized through an X-ray crystallography-supported medicinal chemistry program, resulting in compounds with nanomolar activity against P. aeruginosa LpxA (best half-maximal inhibitory concentration (IC50) <5 nM) and cellular activity against P. aeruginosa (best minimal inhibitory concentration (MIC) of 4 µg/mL). Lack of activity against E. coli was maintained (IC50 > 20 µM and MIC > 128 µg/mL). The mode of action of analogues was confirmed through genetic analyses. As expected, compounds were active against multidrug-resistant isolates. Further optimization of pharmacokinetics is needed before efficacy studies in mouse infection models can be attempted. To our knowledge, this is the first reported LpxA inhibitor series with selective activity against P. aeruginosa.


Subject(s)
Acyltransferases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/chemistry , Crystallography, X-Ray , Drug Resistance, Bacterial/drug effects , Enzyme Inhibitors/chemistry , Escherichia coli/enzymology , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
19.
ACS Chem Biol ; 16(8): 1318-1324, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34374518

ABSTRACT

As enzymes that mediate the attachment of long-chain fatty acids to cysteine residues, ZDHHC proteins have been reported to be promising therapeutic targets for treating cancer and autoimmune diseases. Yet, due to the lack of potent selective inhibitors, scrutiny of the biological functions of ZDHHCs has been limited. The main hindrance for developing ZDHHC inhibitors is the lack of a facile high-throughput assay. Here, we developed a ZDHHC3/7/20 high-throughput assay based on the acylation-coupled lipophilic induction of polarization (Acyl-cLIP) method and screened several potential ZDHHC inhibitors. Furthermore, we demonstrated that in vitro results from the Acyl-cLIP assay are supported by the results from cell-based assays. We envision that this new ZDHHC3/7/20 Acyl-cLIP assay will accelerate the high-throughput screening of large compound libraries for improved ZDHHC inhibitors and provide therapeutic benefits for cancer and autoimmune diseases.


Subject(s)
Acyltransferases/analysis , Enzyme Assays/methods , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays/methods , Acyltransferases/antagonists & inhibitors , Acyltransferases/chemistry , Amino Acid Sequence , Enzyme Inhibitors/chemistry , HEK293 Cells , Humans , Peptides/chemistry
20.
Open Biol ; 11(8): 200415, 2021 08.
Article in English | MEDLINE | ID: mdl-34343464

ABSTRACT

Protein S-acylation or palmitoylation is a widespread post-translational modification that consists of the addition of a lipid molecule to cysteine residues of proteins through a thioester bond. Palmitoylation and palmitoyltransferases (PATs) have been linked to several types of cancers, diseases of the central nervous system and many infectious diseases where pathogens use the host cell machinery to palmitoylate their effectors. Despite the central importance of palmitoylation in cell physiology and disease, progress in the field has been hampered by the lack of potent-specific inhibitors of palmitoylation in general, and of individual PATs in particular. Herein, we present a yeast-based method for the high-throughput identification of small molecules that inhibit protein palmitoylation. The system is based on a reporter gene that responds to the acylation status of a palmitoylation substrate fused to a transcription factor. The method can be applied to heterologous PATs such as human DHHC20, mouse DHHC21 and also a PAT from the parasite Giardia lamblia. As a proof-of-principle, we screened for molecules that inhibit the palmitoylation of Yck2, a substrate of the yeast PAT Akr1. We tested 3200 compounds and were able to identify a candidate molecule, supporting the validity of our method.


Subject(s)
Acyltransferases/antagonists & inhibitors , Lipoylation , Protozoan Proteins/antagonists & inhibitors , Saccharomyces cerevisiae Proteins/antagonists & inhibitors , Saccharomyces cerevisiae/metabolism , Small Molecule Libraries/pharmacology , Animals , Giardia lamblia/drug effects , Giardia lamblia/growth & development , Giardia lamblia/metabolism , High-Throughput Screening Assays , Humans , Mice , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/growth & development , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...